Ultraviolet resonance Raman examination of horse apomyoglobin acid unfolding intermediates.

نویسندگان

  • Z Chi
  • S A Asher
چکیده

We have used UV resonance Raman spectroscopy to study the acid-induced denaturation of horse apomyoglobin (apoMb) between pH 7. 0 and 1.8. The 206.5 nm excited Raman spectra are dominated by amide vibrations, which are used to quantitatively determine the apoMb secondary structure. The 229 nm excited Raman spectra are dominated by the Tyr and Trp Raman bands, which are analyzed to examine changes of Tyr and Trp environments and solvent exposures. We observe two partially unfolded apoMb intermediates at pH 4 and pH 2, while we observe only one partially unfolded holoMb intermediate at 2, in which the G and H helices are mainly intact, while the rest of protein is unfolded. This partially unfolded holoMb intermediate at pH 2 is essentially identical to the pH 2 apoMb intermediate. The partially unfolded pH 4 apoMb intermediate is composed of the three folded A, G, and H helices and contains 38% helical structure. The changes in the Trp Raman cross sections during the acid-induced denaturation indicates that Trp 7 is likely to be fully exposed in the apoMb pH 4 intermediate and that the A helix melts with a pKa approximately 3.5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments.

In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves s...

متن کامل

Submillisecond unfolding kinetics of apomyoglobin and its pH 4 intermediate.

Submillisecond mixing experiments and tryptophan fluorescence spectroscopy are used to address two questions raised in earlier stopped-flow studies of the folding and unfolding kinetics of sperm whale apomyoglobin. A study of the pH 4 folding intermediate (I) revealed, surprisingly, that its folding and unfolding kinetics are measurable and fit the two-state model except for a possible burst ph...

متن کامل

Probing the role of hydration in the unfolding transitions of carbonmonoxy myoglobin and apomyoglobin.

We show that the equilibrium unfolding transition of horse carbonmonoxy myoglobin monitored by the stretching vibration of the CO ligand, a local environmental probe, is very sharp and, thus, quite different from those measured by global conformational reporters. In addition, the denatured protein exhibits an A(0)-like CO band. We hypothesize that this sharp transition reports penetration of wa...

متن کامل

What causes hyperfluorescence: folding intermediates or conformationally flexible native states?

Hyperfluorescent intensity maxima during protein unfolding titrations are often taken as a sign for a thermodynamic folding intermediate. Here we explore another possibility: that hyperfluorescence could be the signature of a "pretransition" conformationally loosened native state. To model such native states, we study mutants of a fluorescent ubiquitin variant, placing cavities at various dista...

متن کامل

UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin.

We have used UV resonance Raman spectroscopy to study the acid denaturation of horse heart aquometmyoglobin (Mb) between pH 7.5 and 1.5. Raman spectra excited at 206.5 nm are dominated by amide vibrations, which are analyzed by using a new methodology to quantitatively determine the Mb secondary structure. In contrast, the 229-nm Raman spectra are dominated by the Tyr and Trp Raman bands, which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 26  شماره 

صفحات  -

تاریخ انتشار 1999